Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing Wei,* Guang Fan and Sheng-Li Gao

Department of Chemistry, Northwest University, Xi'an 710069, People's Republic of China

Correspondence e-mail: weizhang@nwu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.004 Å R factor = 0.038 wR factor = 0.118 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 24 November 2006

Accepted 28 November 2006

Bis(2-amino-4,6-dimethylpyrimidine- κN)bis(isophthalato- $\kappa^2 O, O'$)copper(II) 2-amino-4,6-dimethylpyrimidine disolvate

The title compound, $[Cu(C_8H_5O_4)_2(C_6H_9N_3)_2]\cdot 2C_6H_9N_3$, is a neutral mononuclear copper(II) complex. The Cu²⁺ cation lies on an inversion centre, coordinated by the N atoms from two 2-amino-4,6-dimethylpyrimidine ligands and four O atoms from two chelating isophthalate ligands, in a distorted octahedral configuration. The asymmetric unit also contains a 2-amino-4,6-dimethylpyrimidine solvent molecule. The crystal structure is stabilized by a network of O-H···N, N-H···O and N-H···N hydrogen bonds and π - π stacking interactions, forming a three-dimensional supramolecular structure.

Comment

In the last decade, aromatic dicarboxylates with carboxylate groups in various orientations have been utilized to build coordination polymers (Groeneman *et al.*, 1999; Chen & Liu, 2002). In addition, organic amides have proved to be useful in self-assembly through hydrogen bonding, and such products have relevance to biological systems (Bhogala *et al.*, 2004; Qin *et al.*, 2003). A hybrid structure containing both dicarboxylate and organic amide ligands has been reported by Li *et al.* (2005). We report here the title mononuclear Cu²⁺ complex, (I), formed from a V-shaped dicarboxylate ligand, the isophthalate monoanion acid, (ip⁻) and the amine ligand 2-amino-4,6-dimethylpyrimidine (adp) and describe its supramolecular structure (Fig. 1).

The asymmetric unit of (I) consists of a Cu^{2+} cation, which lies on an inversion centre, a monoanionic isophthalate ligand, a monodentate adp ligand and an uncoordinated adp mol-

 ${\ensuremath{\mathbb C}}$ 2007 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of the title complex with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Atoms labelled with the suffix A are related to other atoms by the symmetry operation (-x, 1 - y, 2 - z). Intramolecular hydrogen-bonding interactions are indicated by dashed lines.

Figure 2

The one-dimensional chain structure of (I). Hydrogen bonds are shown as dashed lines.

ecule. Only one carboxylate group of the isophthalic acid is deprotonated and the resulting monoanion acts as a semichelating ligand (Addison *et al.*, 1971; Guilera & Steed, 1999), with Cu1-O1 = 2.002 (2) Å and Cu-O2 = 2.548 (2) Å. This suggests a non-negligible interaction between the copper and the second carboxylate oxygen. The adp ligand is monodentate, binding through a pyrimidine N atom [Cu1-N1 = 2.019 (2) Å]. The overall coordination geometry at Cu is distorted octahedral.

In the crystal structure, atoms N5 and N6 of an uncoordinated adp molecule form $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds to atoms O3 and O4 of the protonated carboxylate group from an ip ligand, forming an $R_2^2(8)$ ring motif (Bernstein *et al.*, 1995) (Fig. 2). In addition, $N-H\cdots N$ hydrogen bonds connect adjacent non-coordinating adp molecules which, in turn, link to the Cu complex, forming a one-dimensional chain. The hydrogen-bonding network is completed by $N-H\cdots O$ interactions between neighboring chains, forming a two-dimensional network (Fig. 3).

The two-dimensional sheet structure of (I). Hydrogen bonds are shown as dashed lines.

 π - π Stacking interactions in (I), with centroid-centroid interactions shown as dashed lines.

Offset $\pi - \pi$ stacking interactions between the adp and ip rings of complex molecules in adjacent parallel planes further stabilize the structure. The face-to-face distance between the centroids of adjacent adp and ip rings is 3.693 Å (Fig. 4). These combine with the hydrogen-bonding interactions to give the three-dimensional supramolecular structure of (I).

Experimental

The title compound was obtained as the main product of the hydrothermal reaction of copper(II) nitrate trihydrate, 2-amino-4,6-dimethylpyrimidine and isophthalic acid in the molar ratio 1:2:2 in a Teflon-lined stainless steel Parr bomb at 413 K over a period of 3 d. After cooling slowly to room temperature, green single crystals of (I) were obtained.

Crystal data

$[Cu(C_8H_5O_4)_2(C_6H_9N_3)_2] \cdot 2C_6H_9N_3$
$M_r = 886.43$
Triclinic, $P\overline{1}$
a = 7.4010 (2) Å
b = 9.3811 (3) Å
c = 15.2889 (5) Å
$\alpha = 101.819 \ (2)^{\circ}$
$\beta = 93.013 \ (2)^{\circ}$
$\gamma = 93.547 \ (2)^{\circ}$

Data collection

Bruker SMART APEX-II CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.828, T_{\rm max} = 0.916$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_c^2) + (0.0754P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.118$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.07	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
3600 reflections	$\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$
282 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.0029 (5)

V = 1034.69 (5) Å³

 $D_x = 1.423 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

 $0.33 \times 0.21 \times 0.15$ mm

8817 measured reflections 3600 independent reflections

2933 reflections with $I > 2\sigma(I)$

 $\mu = 0.60 \text{ mm}^-$

T = 273 (2) K

Block, green

 $\begin{array}{l} R_{\rm int} = 0.052 \\ \theta_{\rm max} = 25.0^\circ \end{array}$

Z = 1

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4\cdots N5^i$	0.82	1.80	2.585 (3)	160
N3-H3A···O2 ⁱⁱ	0.86	2.11	2.921 (3)	157
N3−H3B···O1	0.86	2.37	2.992 (3)	129
N6-H6A···N4 ⁱⁱⁱ	0.86	2.28	3.116 (3)	165
N6-H6 B ···O3 ⁱ	0.86	2.25	3.099 (3)	170

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H = 0.93 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for aromatic, C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl, N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$ for amine and O-H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$ for carboxy H atoms.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors sincerely thank the Natural Science Fundation of Shaanxi Province (No. Ff05203).

References

- Addison, C. C., Logan, N., Wallwork, S. C. & Garner, C. D. (1971). Q. Rev. Chem. Soc. 34, 289–322.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bhogala, B. R., Thallapally, P. K. & Nangia, A. (2004). Cryst. Growth Des. 4, 215–218.
- Bruker (2002). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.
- Groeneman, R. H., MacGillivray, L. R. & Atwood, J. L. (1999). *Inorg. Chem.* 38, 208–209.
- Guilera, G. & Steed, J. W. (1999). Chem. Commun. 16, 1563-1564.
- Li, C.-B., Liu, B., Gao, G.-G. & Che, G.-B. (2005). Acta Cryst. E61, m1705– m1707.
- Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem. 42, 1956– 1965.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.